163 research outputs found

    A dependently typed multi-stage calculus

    Get PDF
    Programming Languages and Systems: 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1–4, 2019. Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893). Also part of the Programming and Software Engineering book sub series (LNPSE, volume 11893).We study a dependently typed extension of a multi-stage programming language à la MetaOCaml, which supports quasi-quotation and cross-stage persistence for manipulation of code fragments as first-class values and an evaluation construct for execution of programs dynamically generated by this code manipulation. Dependent types are expected to bring to multi-stage programming enforcement of strong invariant—beyond simple type safety—on the behavior of dynamically generated code. An extension is, however, not trivial because such a type system would have to take stages of types—roughly speaking, the number of surrounding quotations—into account. To rigorously study properties of such an extension, we develop λMD, which is an extension of Hanada and Igarashi’s typed calculus λ▹% with dependent types, and prove its properties including preservation, confluence, strong normalization for full reduction, and progress for staged reduction. Motivated by code generators that generate code whose type depends on a value from outside of the quotations, we argue the significance of cross-stage persistence in dependently typed multi-stage programming and certain type equivalences that are not directly derived from reduction rules

    Clinical Studies on Gout 2nd Report: Statistical Observation on Gouty Arthritis in Japan

    Get PDF
    The authors gathered 78 cases of gouty arthritis reported in Japan between 1898 and 1960, and analysed them statistically. 1. The incidence of gouty arthritis appears to have increased since about the end of the 2nd World War, especially since 1955. 2. The age of the presumptive onset of the disease is lower in Japanese than in white populations. 3. In many cases, the gouty patients were wrongly diagnosed as rheumatoid arthritis, synovitis or panaritium patients, and only 20 per cent of the cases examined were diagnosed correctly at the first consultation. The author stresses that diagnosis at an early stage is necessary to avoid serious complications such as cardiovascular and renal involvements. If the condition is satisfactorily controlled by diets and drugs, however, the prognosis for gouty patients is excellent

    Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types

    Get PDF
    27th International Conference, TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021Part of the Lecture Notes in Computer Science book series (LNTCS, volume 12652)A smart contract is a program executed on a blockchain, based on which many cryptocurrencies are implemented, and is being used for automating transactions. Due to the large amount of money that smart contracts deal with, there is a surging demand for a method that can statically and formally verify them. This tool paper describes our type-based static verification tool HELMHOLTZ for Michelson, which is a statically typed stack-based language for writing smart contracts that are executed on the blockchain platform Tezos. HELMHOLTZ is designed on top of our extension of Michelson’s type system with refinement types. HELMHOLTZ takes a Michelson program annotated with a user-defined specification written in the form of a refinement type as input; it then typechecks the program against the specification based on the refinement type system, discharging the generated verification conditions with the SMT solver Z3. We briefly introduce our refinement type system for the core calculus Mini-Michelson of Michelson, which incorporates the characteristic features such as compound datatypes (e.g., lists and pairs), higher-order functions, and invocation of another contract. HELMHOLTZ successfully verifies several practical Michelson programs, including one that transfers money to an account and that checks a digital signature

    Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types

    Get PDF
    A smart contract is a program executed on a blockchain, based on which many cryptocurrencies are implemented, and is being used for automating transactions. Due to the large amount of money that smart contracts deal with, there is a surging demand for a method that can statically and formally verify them. This article describes our type-based static verification tool HELMHOLTZ for Michelson, which is a statically typed stack-based language for writing smart contracts that are executed on the blockchain platform Tezos. HELMHOLTZ is designed on top of our extension of Michelson’s type system with refinement types. HELMHOLTZ takes a Michelson program annotated with a user-defined specification written in the form of a refinement type as input; it then typechecks the program against the specification based on the refinement type system, discharging the generated verification conditions with the SMT solver Z3. We briefly introduce our refinement type system for the core calculus Mini-Michelson of Michelson, which incorporates the characteristic features such as compound datatypes (e.g., lists and pairs), higher-order functions, and invocation of another contract. HELMHOLTZ successfully verifies several practical Michelson programs, including one that transfers money to an account and that checks a digital signature

    Bis[μ-3,5-bis­(2-pyrid­yl)pyrazolato]bis­(hydrogensulfato)­dicopper(II) methanol disolvate

    Get PDF
    The title compound, [Cu2(C13H9N4)2(HSO4)2]·2CH3OH, consists of discrete centrosymmetric dinuclear complex mol­ecules and methanol solvent mol­ecules. The CuII atom shows a square-pyramidal coordination geometry and is bonded to four N atoms of the two bis-chelating 3,5-bis­(2-pyrid­yl)pyrazol­ate ions (bpypz−) and one O atom of the hydrogensulfate ion. The bpypz− ligands in the complex mol­ecule are virtually coplanar [dihedral angle between the mean ligand planes = 0.000(1)°] with the CuII atom deviating in opposite directions from their best plane by 0.2080 (12) Å. π–π stacking inter­actions between the pyridyl and pyrazole rings [centroid–centroid distance = 3.391 (3) Å] and strong O—H⋯O hydrogen bonds between the hydrogensulfate ligands and the methanol mol­ecules assemble the mol­ecules into a one-dimensional polymeric structure extending along the a axis. The methanol mol­ecule acts both as an accepter and a donor in the hydrogen bonding

    Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios

    Get PDF
    ごくありふれた有機分子からナノ細線をつくり立たせて埋めつくす --立体電子回路や超高感度センサーへ--. 京都大学プレスリリース. 2021-06-30.The critical dimension of semiconductor devices is approaching the single-nm regime, and a variety of practical devices of this scale are targeted for production. Planar structures of nano-devices are still the center of fabrication techniques, which limit further integration of devices into a chip. Extension into 3D space is a promising strategy for future; however, the surface interaction in 3D nanospace make it hard to integrate nanostructures with ultrahigh aspect ratios. Here we report a unique technique using high-energy charged particles to produce free-standing 1D organic nanostructures with high aspect ratios over 100 and controlled number density. Along the straight trajectory of particles penetrating the films of various sublimable organic molecules, 1D nanowires were formed with approximately 10~15 nm thickness and controlled length. An all-dry process was developed to isolate the nanowires, and planar or coaxial heterojunction structures were built into the nanowires. Electrical and structural functions of the developed standing nanowire arrays were investigated, demonstrating the potential of the present ultrathin organic nanowire systems

    Characterization of the novel mutant A78T-HERG from a long QT syndrome type 2 patient: Instability of the mutant protein and stabilization by heat shock factor 1

    Get PDF
    Background:The human ether-a-go-go-related gene (HERG) encodes the α-subunit of rapidly activating delayed-rectifier potassium channels. Mutations in this gene cause long QT syndrome type 2 (LQT2). In most cases, mutations reduce the stability of the channel protein, which can be restored by heat shock (HS). Methods: We identified the novel mutant A78T-HERG in a patient with LQT2. The purpose of the current study was to characterize this mutant protein and test whether HS and heat shock factors (HSFs) could stabilize the mutant protein. A78T-HERG and wild-type HERG (WT-HERG) were expressed in HEK293 cells and analyzed by immunoblotting, immunoprecipitation, immunofluorescence, and whole-cell patch clamping. Results: When expressed in HEK293 cells, WT-HERG gave rise to immature and mature forms of the protein at 135 and 155 kDa, respectively. A78T-HERG gave rise only to the immature form, which was heavily ubiquitinated. The proteasome inhibitor MG132 increased the expression of immature A78T-HERG and increased both the immature and mature forms of WT-HERG. WT-HERG, but not A78T-HERG, was expressed on the plasma membrane. In whole-cell patch clamping experiments, depolarizing pulses evoked E4031-sensitive HERG channel currents in cells transfected with WT-HERG, but not in cells transfected with A78T-HERG. The A78V mutant, but not A78G mutant, remained in the immature form similarly to A78T. Maturation of the A78T-HERG protein was facilitated by HS, expression of HSF-1, or exposure to geranyl geranyl acetone. Conclusions: A78T-HERG was characterized by protein instability and reduced expression on the plasma membrane. The stability of the mutant was partially restored by HSF-1, indicating that HSF-1 is a target for the treatment for LQT2 caused by the A78T mutation in HERG
    corecore